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GOLD will make
unprecedented, near
real-time images of
upper atmosphere’s
response to forcing
from above and
below

GOLD images the
disk and limb from
geostationary orbit

Full disk images at
30-minute cadence

The View from Geostationary Orbit
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GOLD images the
disk and limb from
geostationary orbit

Full disk images at
30-minute cadence

GOLD measures the
composition and
temperature of the
thermosphere

TEMPERATURE

The View from Geostationary Orbit




Weather in the Thermosphere-lonosphere GOID

Forcing from Above

Science Question 1 (Q1).
How do geomagnetic storms
alter the temperature and
composition structure of the
thermosphere?

N

Q4. How does the nighttime equatorial
lonosphere influence the formation and evolution
of equatorial plasma density irregularities?

/ N

Q3. How significant are the effects of atmospheric
waves and tides propagating from below on
thermospheric temperature structure?

Q2. What is the global-
scale response of the
thermosphere to solar
extreme-ultraviolet
variability?

Forcing from Below
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The Thermosphere-lonosphere System GOID
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GOLD simultaneously images temperature and composition (O/N,)
In lower thermosphere, near 150 km, on the dayside disk

On nightside disk GOLD images of N,,.,. peak electron density
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Baseline Science Requirements
Traceable to Mission Science Objectives

Ealny

Baseline Science Requirements Question
1. GOLD shall make disk images of atomic oxygen (O) 135.6 nm emissions and molecular nitrogen Q1-Q4
(N,) Lyman-Birge-Hopfield (LBH) emissions over a latitude range of =60" and a longitude range of
+70° relative to spacecraft nadir.
2. GOLD shall construct, on the sunlit portion of the disk, images of: Q1-Q3
a. lower thermosphere temperature with a precision of 55 K with 60 minute cadence and
spatial resolution of 250 km X 250 km (at nadir); and
b. thermosphere column composition (O/N, radiance ratio) with a precision of 10% with 30
minute cadence and spatial resolution of 250 km x 250 km (at nadir).
3. GOLD shall construct, on the nighttime portion of the disk, images of Nmax F2, at the peak of the Q4
equatorial arcs, with a precision of 10% and a latitude resolution of 2°.
4. GOLD shall track ionospheric bubbles (depletions) within a single equatorial arc with a precision Q4
of 20% in brightness and a spatial resolution (at nadir) of 100 km in the longitudinal direction.
5. GOLD shall measure near-equatorial limb profiles of the N, LBH emissions up to an altitude of Q1-Q2
approximately 350 km.
6. GOLD shall measure exospheric temperature (near-equatorial) with a precision of 40 K in the Q1-Q2
daytime.
7. GOLD shall measure O, line-of-sight column densities at an altitude of 160 km with a precision of Q1-Q3
10% and a vertical resolution of 10 km in the nighttime and daytime by stellar occultation.
8. GOLD shall perform all of the above from geostationary orbit for two years. Q1-Q4

| : . . :
Baseline mission unchanged since Proposal
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Forcing of the T-1 System from Above @GOID

Daily Average Power Values for Solar Cycles 21-23
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@ Geomagnetic Forcing of T-1 System &0y

How do geomagnetic storms impact Earth’s space environment?
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Modeled changes in upper atmosphere during storm

GOLD will discover how the upper atmosphere acts as a weather system
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Forcing from Below GOID

* Nighttime: evidence that * Daytime: observed thermospheric
geographic-locked atmospheric tides  temperatures & densities consistent with
affect the ionosphere tidal influences from lower atmosphere

* Theory suggests tides cause 4 « GOLD images temperatures at

peaks in longitudinal morphology of sufficient precision to observe tides
the equatorial ionosphere

s -
e -5 2 8 15 22 28 _35
Composite map of equatorial O* Modeled AT(K) due to Tides

recombination emission from IMAGE far-
ultraviolet observations at constant local
time [Immel et al., 2006]

Temperature differences between simulated
GOLD observations of thermosphere with and
without tides
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Lonéhude -
WACCM Calculation of Gravity Waves at High Resolution

T (K) at ~110 km
(0.25° Spatial by 0.1 Scale Height)

From: Hanli Liu at NCAR/HAO
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With and Without Lower Atmosphere:

Typical iono-thermosphere model: lonosphere-thermosphere model

* Driven by Solar EUV and coupled to the lower atmosphere:
Geomagnetic Storms. Global maps show structure relevant to

» Global maps show little fine « GPS accuracy and availability
structure * HF Comm.

Temperature

v ""-—’-’-L .

by The temperature cture from a stand-alone thermosphere ionosphere
plasmasphere el (e.g., CTIPe) is similar to the MSIS empirical model.
The Whole Aﬁhosphere Model (WAM) drives variability from the chaotic
lower atmosphere which introduces a whole spectrum of variability.

24 February 2015 R. Viereck/INOAA



Data Assimilation Challenge

* The lonosphere-Thermosphere system is a strongly driven system

— Order of magnitude electron density changes...
* Driven by order of magnitude changes in solar EUV and Geomagnetic activity.
e Occur on timescales of minutes.

Observed
Modeled

e Data assimilation is challenging Assimilation

* Adjusting ionospheric conditions to
match observations does not work.
The ionosphere returns to its
original state in the next few time
steps.

* Not sure which DA scheme is best

a. Extended GSl/hybrid (3D EnVar)

b. Extended 4D hybrid (4D EnVar)

c. Separate lono-Thermo
ensemble Kalman Filter
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24 February 2015 R. Viereck/NOAA Time Steps (5 min per step)




GOLD Mission Instrument GOID

» Imaging Spectrograph: Two independent,
identical channels imaging the limb and disk,
and a single processor packaged in one

. Channel 2 =
housing Ls
+ Wavelength range: 132 — 160 nm Channel 1
» Detectors: Microchannel plate, 2-D crossed \
delay line anode \
Flex-Circuit =
harnessing
E Box
(proto shown here 6 Kinematic
s - - Struts

] _4
: - L )
'
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Resource Management GOID

* Mass, Power and Data Rate
« Assuming transfer to geostationary orbit using electric propulsion
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Resource CBE MEV ICD Stated Reserves Margin against ICD Stated Value
Value Value % Value %
Mass (Kg) 33.3 36.4 42.0 3.2 9.5% 5.5 15.2%
Power (24 hr avg.) (W) 51.3 61.6 75 10.3 20% 13.4 22%
Power (peak) (W) 87.8 105.4 109 17.6 20% 3.9 4%
Power (survival) (W) 28.7 34.4 50 5.74 20% 15.6 45%
Downlink Rate (Mbit/sec) 6 6 6 0 0% 0 0%
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GOLD Project Leverages Team'’s
Prior Flight Experience

™ Light Shade
. (MAVEN RS)

1-Shot Aperture
Cover (LDEX,
SDO EVE)

Alignment Cube :
(AIM CIPS, ‘%
MAVEN RS) A

Telescope Slit Mech
Aperture (SDO
| Scan Mechanism with EVE, MAVEN RS)
Sun Visor, precision
encoder (Messenger
MASCS, MAVEN RS)
Grating Yaw
—_Mechanism
(MAVEN RS,

SORCE SIM)

B Collimating Mirror

i (MAVEN RS) HVPS (AIM
4 CIPS, SOHO,
MAVEN RS)
Detector
Electronics XDL MCP Detector
(SSULI, JUNO, Assembly (SSULI, JUNO,
ALICE) ALICE) Detector Door
(SORCE SIM, TSIS SIM)
Kinematic
Struts | e Electronics architecture
(MAVENRS) == —— (AIM CIPS, MAVEN RS)
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Simulated GOLD
Image of oxygen
(135.6 nm) emissions

Simultaneously
Images N, emissions
on dayside

Emissions provide
key data for bubbles,
satellite drag, and
electron densities

Provides data to
advance predictions
of assimilation
models and of
geomagnetic storm
effects

TIE-GCM v.

1.95




Observations Overview GOID

GOLD observes O 135.6 nm and N, Lyman-Birge-Hopfield (LBH) emissions
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GOLD'’s Observing Scenario and Data Products GOI!D

 Full disk images and limb scans with 30 minute cadence

- Dayside data products: Disk Temperature, Disk O/N,, Ol and N,
emission brightness, Ty, Qeuy

- Nightside products: Disk Ol brightness, crest locations, N, .,

« Occultation measurements
- Dayside and nightside products: O, density profile

Dayside Disk Imaging Star Occultation Dayside Disk Imaging

Temperature & O/N, Ratio O, Density Profile Temperature & O/N, Ratio
1 2 3a ! 3b
' ' .
> " 3
LIMB/HR slit in place OCC sslitin place Return to HR scan location  HR scan, S hem.day, Wto E
N hem.day, Wto E OCC LIMB/HR slit in place
Interrupt for star occultation HR scan, N hem.day, Wto E
Dayside Limb Scan Nightside Disk Imaging
N, Emission Profile lonospheric Irregularities
4a 4b 5a 5b
’ ‘
LIMB/HR slit in place SW region, Eto W LR slit in place Shem. WtoE
NW region, Eto W N hem., Wto E
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Concept for Observing Operations &0y

Spacecraft Local Time
00:00 03:00 12:00

S e e e B s e e

Dual channel, Day Side Disk Imaging, Day Side Limb Scan, and Stellar Occultations

Cc1
c2

Solar Safe

12:00 17:00 20:00 21:00 24:00

EEEEREEEEEE REE H!

Dual channel, Day Side Disk Imaging, Day Side Limb Nightside Disk Imaging, Day Side Limb
Scan, and Stellar Occultations Scan, and Stellar Occultations

Solar Safe %‘

Legend Daily Measurements
Channel 1 Channel 2

idk w2 « Nominal GOLD observing modes:

Dayside Limb Scan 26 = - Full disk maps and limb scans with 30 minute cadence
Stellar Occultati 7 5

_e ar. ccu_ e _ + HR: Dayside (Disk Temperature, Disk O/N,, O and N, limb emission)
Nightside Disk Imaging 1 4

* LR: Nightside (Disk O emissions)
« HR both limbs for two hours centered on local noon

Observation Parameters

Entrance slit + Switch between HR and LR at the terminator
Startposition  Scanrate | - O,occultation measurements
Step size Scan duration

+ OCC: Dayside and Nightside
* Interrupt nominal disk scans (5% duty cycle)
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GOLD Mission Space Segment &0y

* Host Mission
- Managed by SES \;2‘
- Host Accommodation will be gL
on SES-14 SES”
« GEO commercial
communications satellite at

47.5° W, owned and operated
by SES

« Host satellite is a Eurostar
3000 built by Airbus Defence &
Space

« GOLD Mission Instrument

- Hosted Payload is an
ultraviolet imager developed
by UCF/LASP

- 6 Mbit/s data down-link

Government Solutions
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GOLD Project Schedule
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GOLD Mission Summary & Status ol

e Launches in 2017 for a two-year mission

* Unprecedented, simultaneous imaging of composition
and temperature

e Able to separate changes in time from changes in
location

e Capability for continuous, near real-time data
availability is inherent to the mission

e Mission confirmed by NASA on March 5



Other &0 diny
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Instrument Summary

Mass 33 kg (CBE)

Power | 51 W (CBE, AVG)

Size 51 X 55 X 69 cm3

Global-scale Observations of the Limb and Disk GOID

Imaging Spectrograph:
Two independent, identical channels
Wavelength range: 132 — 160 nm

Detectors: Microchannel plate, 2-D
crossed delay line anode

Launch: Q4 2017

Hosted Payload on geostationary

commercial satellite
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |

Phase A

: : ' ' ' ' ' ' " Launch

Selection SRR PDR CDR PER PSR ORR/MRR End of Ops

Observations:
- Disk maps of neutral temperature
- Disk maps of O/N, density ratio
- Limb scans (for temperature)
- Disk maps of peak electron density
- Stellar occultations

Mission:
- Able to separate changes in time
from changes in location

- Capability for continuous, near real-
time data availability is inherent to
the mission

- Confirmed by NASA on March 5
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